
Week 3

3.1 Dihedral groups
Consider the subset T of transformations of R2, consisting of all rotations by fixed

angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon Pn with n sides in R2, centered at the origin. Iden-

tify the polygon with its n vertices, which form a subset Pn = {x1, x2, . . . , xn} of

R2. If τ(Pn) = Pn for some τ ∈ T , we say that Pn is symmetric with respect to

τ .

Intuitively, it is clear that Pn is symmetric with respect to n rotations

{r0, r1, . . . , rn−1},
and n reflections

{s1, s2, . . . , sn}
in T . In particular |Dn| = 2n.

Proposition 3.1.1. The set Dn := {r0, r1, . . . , rn−1, s1, s2, . . . , sn} is a group,
with respect to the group operation defined by composition of transformations:
τ ∗ γ = τ ◦ γ.

Terminology: Dn is called the n-th dihedral group.

Let r = r1 ∈ Dn be the rotation by the angle 2π/n in the anticlockwise direc-

tion (and similarly rk denotes the rotation by the angle 2kπ/n in the anticlockwise

direction). Then the set of rotations in Dn is given by

〈r〉 = {id, r, r2, . . . , rn−1}.
Furthermore, the composition of two reflections is a rotation (which can be seen,

e.g. by flipping a Hong Kong 2-dollar coin). So if we let s = s1 ∈ Dn be one of

the reflections, then the set of reflections in Dn is given by

{s, rs, r2s, . . . , rn−1s}.
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So we can enumerate the elements of Dn as

Dn = {id, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

3.2 Subgroups
Definition. Let G be a group. A subset H of G is a subgroup of G (denoted as

H < G) if it is a group under the induced operation from G.

More precisely, a subset H ⊂ G is a subgroup of G if

• H is closed under the operation on G, i.e.

a ∗ b ∈ H for any a, b ∈ H,

so that the restriction of the binary operation G × G → G to the subset

H×H ⊂ G×G gives a well-defined binary operation H×H → H , called

the induced operation on H , and

• H is a group under this induced operation.

Example 3.2.1. • For any group G, we have the trivial subgroup {e} < G
and also G < G. We call a subgroup H < G nontrivial if {e} � H and

proper if H � G.

• We have Z < Q < R < C under addition, and Q× < R× < C× under

multiplication.

• For any n ∈ Z, nZ is a subgroup of (Z,+).

• SL(n,R) is a subgroup of GL(n,R).

• The set of all rotations (including the trivial rotation) in a dihedral group Dn

is a subgroup of Dn.

• By viewing Dn as permutations of the vertices of a regular n-gon Pn, we

can regard Dn as a subgroup of Sn.

• Consider the symmetric group Sn where n ∈ Z>0.

Proposition 3.2.2. Each element of Sn is a product of (not necessarily dis-
joint) transpositions.
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Sketch of proof. Show that each permutation not equal to the identity is a

product of cycles, and that each cycle is a product of transpositions:

(i1i2 · · · ik) = (i1ik)(i1ik−1) · · · (i1i3)(i1i2)

Example 3.2.3.(
1 2 3 4 5 6
5 4 3 6 1 2

)
= (15)(246) = (15)(26)(24) = (15)(46)(26)

Note that a given element σ of Sn may be expressed as a product of trans-

positions in different ways, but:

Proposition 3.2.4. In every factorization of σ as a product of transpositions,
the number of factors is either always even or always odd.

Proof. Exercise. One approach: There is a unique n × n matrix, with ei-

ther 0 or 1 as its coefficients, which sends any vector (x1, x2, . . . , xn) to

(xσ(1), xσ(2), . . . , xσ(n)). Use the fact that the determinant of the matrix cor-

responding to a transposition is −1, and that the determinant function of

matrices is multiplicative.

We say that σ ∈ Sn is an even (resp. odd) permutation if it is a product

of an even (resp. odd) number of transpositions. The subset An of Sn

consisting of even permutations is a subgroup of Sn. An is called the n-th

alternating group.

Proposition 3.2.5. A nonempty subset H of a group G is a subgroup of G if and
only if, for all a, b ∈ H , we have ab−1 ∈ H .

Proof. Suppose H ⊆ G is a subgroup. For any a, b ∈ H , existence of inverse

implies that b−1 ∈ H , and then closedness implies that ab−1 ∈ H .

Conversely, suppose H is a nonempty subset of G such that xy−1 ∈ H for all

x, y ∈ H .

• (Identity:) Let e be the identity element of G. Since H is nonempty, it

contains at least one element h. Since e = h · h−1, and by hypothesis

h · h−1 ∈ H , the set H contains e.

• (Inverses:) Since e ∈ H , for all a ∈ H we have a−1 = e · a−1 ∈ H .

• (Closure:) For all a, b ∈ H , we know that b−1 ∈ H . Hence, ab = a ·
(b−1)−1 ∈ H .
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• (Associativity:) This follows from that in G.

Hence, H is a subgroup of G.

One can use this criterion to check that all the previous examples are indeed

subgroups.

3.3 Cyclic subgroups
Recall that for any group G and any element g ∈ G, we have the subset

〈g〉 = {gn : n ∈ Z}.

Proposition 3.3.1. Let G be a group. Then for any element g ∈ G, the subset 〈g〉
is the smallest subgroup of G containing g, which we call the cyclic subgroup
generated by g.

Proof. Let gk, gl be two arbitrary elements in 〈g〉. Then gk(gl)−1 = gk−l ∈ 〈g〉.
So 〈g〉 is a subgroup of G by Proposition 3.2.5.

Now let H < G be any subgroup containing g. Then gk ∈ H for any k ∈ Z
since H is a subgroup. Hence 〈g〉 ⊂ H .

Proposition 3.3.2. The intersection of any collection of subgroups of a group G
is also a subgroup of G.

Proof. Exercise.

Corollary 3.3.3. Let G be a group. Then for any g ∈ G, we have

〈g〉 =
⋂

{H:g∈H<G}
H.
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